首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   847篇
  免费   97篇
  2021年   10篇
  2020年   8篇
  2017年   12篇
  2016年   21篇
  2015年   21篇
  2014年   27篇
  2013年   23篇
  2012年   49篇
  2011年   48篇
  2010年   29篇
  2009年   24篇
  2008年   36篇
  2007年   39篇
  2006年   37篇
  2005年   37篇
  2004年   35篇
  2003年   32篇
  2002年   42篇
  2001年   26篇
  2000年   28篇
  1999年   30篇
  1998年   19篇
  1997年   14篇
  1996年   8篇
  1995年   12篇
  1993年   6篇
  1992年   11篇
  1991年   9篇
  1990年   16篇
  1989年   10篇
  1988年   10篇
  1987年   8篇
  1986年   8篇
  1985年   17篇
  1984年   8篇
  1983年   9篇
  1981年   4篇
  1980年   8篇
  1979年   5篇
  1978年   5篇
  1977年   5篇
  1975年   6篇
  1974年   10篇
  1973年   4篇
  1972年   8篇
  1971年   4篇
  1969年   4篇
  1967年   6篇
  1965年   4篇
  1957年   5篇
排序方式: 共有944条查询结果,搜索用时 203 毫秒
91.
The design and optimization of a novel series of renin inhibitor is described herein. Strategically, by committing the necessary resources to the development of synthetic sequences and scaffolds that were most amenable for late stage structural diversification, even as the focus of the SAR campaign moved from one end of the molecule to another, highly potent renin inhibitors could be rapidly identified and profiled.  相似文献   
92.
MOTIVATION: Microarray experiments are affected by numerous sources of non-biological variation that contribute systematic bias to the resulting data. In a dual-label (two-color) cDNA or long-oligonucleotide microarray, these systematic biases are often manifested as an imbalance of measured fluorescent intensities corresponding to Sample A versus those corresponding to Sample B. Systematic biases also affect between-slide comparisons. Making effective corrections for these systematic biases is a requisite for detecting the underlying biological variation between samples. Effective data normalization is therefore an essential step in the confident identification of biologically relevant differences in gene expression profiles. Several normalization methods for the correction of systemic bias have been described. While many of these methods have addressed intensity-dependent bias, few have addressed both intensity-dependent and spatiality-dependent bias. RESULTS: We present a neural network-based normalization method for correcting the intensity- and spatiality-dependent bias in cDNA microarray datasets. In this normalization method, the dependence of the log-intensity ratio (M) on the average log-intensity (A) as well as on the spatial coordinates (X,Y) of spots is approximated with a feed-forward neural network function. Resistance to outliers is provided by assigning weights to each spot based on how distant their M values is from the median over the spots whose A values are similar, as well as by using pseudospatial coordinates instead of spot row and column indices. A comparison of the robust neural network method with other published methods demonstrates its potential in reducing both intensity-dependent bias and spatial-dependent bias, which translates to more reliable identification of truly regulated genes.  相似文献   
93.
94.
Using quantitative trait locus (QTL) mapping, we studied the genetic basis of the difference in pigmentation between two sister species of Drosophila: Drosophila yakuba, which, like other members of the D. melanogaster subgroup, shows heavy black pigmentation on the abdomen of males and females, and D. santomea, an endemic to the African island of S?o Tomé, which has virtually no pigmentation. Here we mapped four QTL with large effects on this interspecific difference in pigmentation: two on the X chromosome and one each on the second and third chromosomes. The same four QTL were detected in male hybrids in the backcrosses to both D. santomea and D. yakuba and in the female D. yakuba backcross hybrids. All four QTL exhibited strong epistatic interactions in male backcross hybrids, but only one pair of QTL interacted in females from the backcross to D. yabuka. All QTL from each species affected pigmentation in the same direction, consistent with adaptive evolution driven by directional natural selection. The regions delimited by the QTL included many positional candidate loci in the pigmentation pathway, including genes affecting catecholamine biosynthesis, melanization of the cuticle, and many additional pleiotropic effects.  相似文献   
95.
The oligomerization domain that is present at the C terminus of Ikaros-family proteins and the protein Trps-1 is important for the proper regulation of developmental processes such as hematopoiesis. Remarkably, this domain is predicted to contain two classical zinc fingers (ZnFs), domains normally associated with the recognition of nucleic acids. The preference for protein binding by these predicted ZnFs is not well-understood. We have used a range of methods to gain insight into the structure of this domain. Circular dichroism, UV-vis, and NMR experiments carried out on the C-terminal domain of Eos (EosC) revealed that the two putative ZnFs (C1 and C2) are separable, i.e., capable of folding independently in the presence of Zn(II). We next determined the structure of EosC2 using NMR spectroscopy, revealing that, although the overall fold of EosC2 is similar to other classical ZnFs, a number of differences exist. For example, the conformation of the C terminus of EosC2 appears to be flexible and may result in a major rearrangement of the zinc ligands. Finally, alanine-scanning mutagenesis was used to identify the residues that are involved in the homo- and hetero-oligomerization of Eos, and these results are discussed in the context of the structure of EosC. These studies provide the first structural insights into how EosC mediates protein-protein interactions and contributes to our understanding of why it does not exhibit high-affinity DNA binding.  相似文献   
96.
Aggressive behavior is important for animal survival and reproduction, and excessive aggression is an enormous social and economic burden for human society. Although the role of biogenic amines in modulating aggressive behavior is well characterized, other genetic mechanisms affecting this complex behavior remain elusive. Here, we developed an assay to rapidly quantify aggressive behavior in Drosophila melanogaster, and generated replicate selection lines with divergent levels of aggression. The realized heritability of aggressive behavior was approximately 0.10, and the phenotypic response to selection specifically affected aggression. We used whole-genome expression analysis to identify 1,539 probe sets with different expression levels between the selection lines when pooled across replicates, at a false discovery rate of 0.001. We quantified the aggressive behavior of 19 mutations in candidate genes that were generated in a common co-isogenic background, and identified 15 novel genes affecting aggressive behavior. Expression profiling of genetically divergent lines is an effective strategy for identifying genes affecting complex traits.  相似文献   
97.
98.
99.
Transient neonatal diabetes mellitus (TNDM) is characterised by intra-uterine growth retardation, while Beckwith–Wiedemann syndrome (BWS) is a clinically heterogeneous overgrowth syndrome. Both TNDM and BWS may be caused by aberrant loss of methylation (LOM) at imprinted loci on chromosomes 6q24 and 11p15.5 respectively. Here we describe two patients with a clinical diagnosis of TNDM caused by LOM at the maternally methylated imprinted domain on 6q24; in addition, these patients had LOM at the centromeric differentially methylated region of 11p15.5. This shows that imprinting anomalies can affect more than one imprinted locus and may alter the clinical presentation of imprinted disease.  相似文献   
100.
Multivariate predictive models are widely used tools for assessment of aquatic ecosystem health and models have been successfully developed for the prediction and assessment of aquatic macroinvertebrates, diatoms, local stream habitat features and fish. We evaluated the ability of a modelling method based on the River InVertebrate Prediction and Classification System (RIVPACS) to accurately predict freshwater fish assemblage composition and assess aquatic ecosystem health in rivers and streams of south-eastern Queensland, Australia. The predictive model was developed, validated and tested in a region of comparatively high environmental variability due to the unpredictable nature of rainfall and river discharge. The model was concluded to provide sufficiently accurate and precise predictions of species composition and was sensitive enough to distinguish test sites impacted by several common types of human disturbance (particularly impacts associated with catchment land use and associated local riparian, in-stream habitat and water quality degradation). The total number of fish species available for prediction was low in comparison to similar applications of multivariate predictive models based on other indicator groups, yet the accuracy and precision of our model was comparable to outcomes from such studies. In addition, our model developed for sites sampled on one occasion and in one season only (winter), was able to accurately predict fish assemblage composition at sites sampled during other seasons and years, provided that they were not subject to unusually extreme environmental conditions (e.g. extended periods of low flow that restricted fish movement or resulted in habitat desiccation and local fish extinctions).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号